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MOTIVATION : 
An “unknown” or “over-looked” magnetosphere 

- Pivotal role of    

  magnetosheath 

- Implications for  

  CME-driven storms 
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High-β magnetosheath 
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Low Mach number 
                 =  

Low-β magnetosheath 



Magnetosheath β as a function of SW Mach number 

 Low-β magnetosheath prevails during low Mach numbers: 

Magnetic forces become important/dominant 

- Rankine-Hugoniot shock 

  Jump conditions 

 

- MMS = VSW / √(VA
2 + VS

2)  

 

- MA = VSW / VA 

 

 

-  MA > MMS Varying IMF 

Perpendicular shock case 



Magnetosheath flow dependence on Mach number  

 Strong flow acceleration : increasing for decreasing MA 

Global MHD simulations (BATS-R-US) 

for high and low Mach numbers 

Equatorial planes 

See also Chen et al. [1993], Rosenqvist et al. [2007] 



Magnetosheath flow acceleration and asymmetry  

 Asymmetric flow acceleration, along the flanks only:  

a magnetic “slingshot” effect? 

Global MHD simulation (BATS-R-US) 

for low Mach number (MA = 2) 

Equatorial plane X = -5 RE 



Mechanism of magnetosheath flow acceleration 

 We can estimate the contribution of each force: 

J x B acceleration dominates at low Mach numbers 

- Steady state  

  momentum equation: 

 

 

 

- Magnetic forces  

 

 

 

 

- Integration of forces: 

Selection of  

streamline 

∂s 

MHD simulation for low MA 
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v Note: Not a simple analogy to a 

“slingshot”, magnetic pressure gradient 

as important as tension force (~10%      45%      45%) 



Observation of such magnetosheath flow jets 

 Flows not associated with reconnection and 60% > SW 

- Solar wind observations: 

   IMF large and north 

   SW density low 

 

- Cluster observations: 

   Flows        B field 

       outside MP 

   Up to 1040 km/s while 

       SW is only 650 km/s 
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Flow asymmetry: role of IMF direction 

 The enhanced flow location follows the IMF orientation 
+ additional anomalous flow deflections [Nishino et al., 2008] 

Flow magnitude and sample field lines from MHD simulations (X = -5 RE) 



Statistics of magnetosheath flows 

• Use of all Cluster data in years 2001 – 2010 
 

• Data binned in Verigin et al. (2006)  

magnetosheath reference frame 
 

• Solar wind data from OMNI 
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Statistics of magnetosheath flows 

 Magnetosheath flows are symmetric for high Mach number 

MA > 6 MA < 5 

Data when local B  

is perp. to local V  

Data when local B  

is para to local V  
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Statistics of magnetosheath flows 

 Strong asymmetry confirmed by statistics for low MA 

MA > 6 MA < 5 

Data when local B  

is perp. to local V  

Data when local B  

is para to local V  



Magnetopause asymmetry: role of magnetic forces 

 The magnetopause is squeezed owing to enhanced 

magnetic forces in the magnetosheath 

Current magnitude and sample field lines from MHD simulations (X = -5 RE) 



Magnetopause asymmetry: role of IMF direction 

 The magnetopause squeezing follows the IMF orientation 

Current magnitude and sample field lines from MHD simulation (X = -5 RE) 

IMF 



Magnetopause asymmetry: observations 

 Statistical confirmation of 

magnetopause squeezing 

• 297 MP crossings with MA > 6 
from the list of Wang et al. [2006] 

 

• 241 MP crossings with MA < 5 
from data mining with AMDA 

 

• Solar wind from OMNI 
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Extreme retreat of bow shock and sunward sheath flows 
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Extreme retreat of bow shock and sunward sheath flows 
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Extreme retreat of bow shock and sunward sheath flows 

Extreme (akin to HFA) 

bow shock and 

sheath dynamics if 

fast MA variations 
 

Note: first sunward sheath flow  

observed at Jupiter (Siscoe, 1971) 
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Formation of Alfvén wings at Earth 

 Alfvén wings are expected under such extreme low MA 

On 24-25 May 2002, during a CME the Alfvén Mach number reached 0.4  

MA 

β 

Chané et al. [2012] 

 

3D schematic of expected Alfvén wing structure 



Formation of Alfvén wings at Earth 

 Alfvén wings  

do occur at Earth 
(rarely though…) 

Observations and simulations for 24-25 May 2002 during MA = 0.4  

GEOTAIL 

    Chané et al. [2014] 

 

- GGCM simulations of 

Alfvén wing 

 

- GeoTail observations 

consistent with  

simulations 

 

- Both data and simulation 

show very low activity 

 

MA = 4.8 MA = 0.4 



SOME OTHER LOW MA EFFECTS 

•  Possibly faster KH instability onset at flanks 
 

•  Changes to dayside reconnection rate 
 

•  Cross-polar cap potential saturation 
 

•  Global sawtooth oscillations 
 

•  Plasma depletion layer (disappears at high MA) 
 

•  Heating at bow shock (Ti/Te) 
 

•  Drifts and losses to the magnetopause  

   (radiation belts and ring current) 
 

•  Bow shock acceleration and reflection 

   else … 



CONCLUSIONS 

•  SW – magnetosphere interaction is  

   significantly altered at low Mach number 

 

•  It is mediated by a buffer region: 

   the magnetosheath 

 

•  All these effects are thus important during  

   CME-driven storms 

 

•  They must occur at other magnetospheres 

   (Mercury: low MA and no ionosphere 

    Moons, e.g., like Io in sub-Alfvenic flows) 
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Occurrence distribution of solar wind Mach numbers 

 CMEs, and particularly the subset of magnetic clouds,  

have low Mach numbers 

- Binning of OMNI dataset 

 

- Lists from: 

  CMEs: Cane and Richardson  

            [2003] 

  MCs: Lepping et al. [2006] 

  HSS: Borovsky and Denton   

            [2006] 

See also: 

Gosling et al. [1987] 

Borovsky and Denton [2006] 



Extreme retreat of bow shock and sunward sheath flows 

Extreme (akin to HFA) 

bow shock and 

sheath dynamics if 

fast MA variations 
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